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1. 

There are many techniques under investigation to use measured vibration data to detect
damage in structures [1–3]. These techniques need a large number of sensors to locate
damage, and the structural response characteristics vary with small changes in boundary
conditions and the environment. In this condensed paper, optimization of Frequency
Response Functions (FRFs) is investigated as a means to diagnose damage using a
minimum number of sensors.

2.   

The damage detection procedure assumes that a finite element model of the structure
exists that has been correlated to match the frequency response of the actual undamaged
structure in the lower frequency range. A minimum number of sensors will be located at
critical points on the actual structure to measure the vibration response to a known low
level excitation. The receptance FRF is then computed and assigned to the finite element
model of the undamaged structure to locate the damage. The finite element model in the
damaged condition will then be used to predict the remaining strength and safety of the
structure.

The linear equations that describe the vibration of the undamaged structure subjected
to a harmonic force input are

Mẍ+Dẋ+Kx=Real [poexp(ivt)], (1)

where M, D and K are the mass, damping, and stiffness matrices, initially of the
undamaged model, x is the displacement vector, v is the excitation frequency, po is a
constant and possibly complex forcing vector, t is time, and i=z−1. Bold notation is
used to denote matrices and vectors. The structural matrices are symmetric, and often M
is diagonal. The D matrix is assumed proportional to M and K. As a particular solution
to equation (1), let

x(t)=Real [qoexp(ivt)], (2)

where qo is a complex receptance frequency response vector. Substituting equation (2) into
equation (1) gives

Real [((K−v2M+ ivD)qo − po )exp(ivt)]=0. (3)
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A solution to equation (3) is

(K−v2M+ ivD)qo − po =0. (4)

In equation (4) it is assumed that the structural matrices are known approximately from
a finite-element model, the force po is known, and that qo is measured from the undamaged
structure. Then equation (4) can be used in a reverse procedure to adjust or identify the
system matrices to produce the measured FRFs in the healthy condition. After the model
is correlated with the healthy response, we assume the actual structure sustains damage
and measure the frequency response vector of the damaged structure, denoted qd . Using
qd in equation (4), which contains the identified healthy system matrices, then gives

d(iv)= (K−v2M+ ivD)qd − po , (5)

where d(iv) is a receptance residual vector that identifies the d.o.f. at which damage occurs.
If the full qd vector is known at some frequency at which it is affected by the damage, then
the non-zero entries of the vector d(iv) will identify the d.o.f. at which damage has
occurred. The problem with this approach is that it is usually not possible to measure a
full frequency response vector, that is, have a sensor at each d.o.f. in the model. An
alternative approach is to perform a co-ordinate reduction on equation (5) and then make
the resulting equation equal to zero by adjusting the D and K matrices to represent the
damaged structure. In that way, the matrices of the healthy versus damaged structures can
be compared to diagnose the damage.

This approach is performed by partitioning qd as qd =[q1 q2]T where q1 denotes d.o.f.
on the damaged structure where the frequency response is measured, and q2 denotes d.o.f.
where the frequency response is not measured. The load vector is partitioned similarly.
Define H as the frequency response matrix of the system. Then the system matrix A is
defined as A=H−1 = (K−v2M+ ivD), which in partitioned form is

A=$A11

A21

A12

A22%=$(K11 −v2M11 + ivD11)
(K21 −v2M21 + ivD21)

(K12 −v2M12 + ivD12)
(K22 −v2M22 + ivD22)%. (6)

Rewriting equation (4) using qd and equation (6) gives

$A11

A21

A12

A22%$q1

q2%=$p1

p2%. (7)

Eliminating the q2 co-ordinates from equations (7) gives

(A11 −A12A−1
22 A21)q1 − (p1 −A12A−1

22 p2)= 0. (8)

Equation (8) will not equal zero unless the A matrices represent the damaged system, and
thus the left hand side of equation (8) is a measure of the error between the system matrices
of the undamaged and damaged systems. Therefore, the basis of the damage detection
procedure is to update the A matrices in equation (8) to represent the damaged system
by using an optimizer to adjust the properties of the finite elements. This approach is called
frequency response function assignment, as the model parameters are being adjusted to
assign the q1 vector as the frequency response of the system. It should be understood that
although a dynamic reduction has been used to obtain equation (8), the A matrix is
adjusted by the optimization procedure to exactly equal the damaged system. Thus there
are no mathematical approximations in this procedure, assuming the analytical model
represents the actual structural response. This is in contrast to damage detection methods
that use dynamic expansion or Guyan reduction of the undamaged system. In reference
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[4] it is shown that expansion or reduction of the undamaged system always introduces
errors into the damage prediction whenever there is damage in the section of the model
being reduced, i.e., the A22 matrix in equation (6).

Inverting the A22 matrix in equation (8) versus frequency in an optimization algorithm
is computationally very expensive for large order systems. This limitation can be lessened
by restricting the D matrix to have the same connectivity and symmetry as the K matrix.
This restriction makes sense on a physical basis because material dependent damping will
have the same connectivity as the stiffness matrix. From equation (6) we can write

A22(v)= (K22 −v2M22 + ivD22). (9)

Equation (9) shows that for a typical finite-element model the A22 matrix is sparse,
symmetric, and has the same banding as the K matrix. Thus, its inverse can be found
efficiently using a sparse matrix solver. A reduction in the number of design variables in
the optimization can be obtained by assuming proportional damping, that is,
D=(c1K+ c2M), where the c values are constants to be optimized. Computational
requirements of the technique can also be reduced by carefully building the finite element
model to minimize the bandwidth and number of non-zero entries in the stiffness matrix.
When selecting the d.o.f. to measure the frequency response of the damaged structure, it
is helpful to look for the columns of the stiffness matrix with the least number of zeros,
that is, the greatest connectivity. This will provide the greatest accuracy in identifying the
damage and place the maximum number of zero entries in the A22 matrix, which will
speed-up computations.

An objective function that can be minimized to assign the q1(v) frequency response
vector from the damaged model to the undamaged system is formed using equation (8)

J= s
nf

r=1

E*T
r QEr , (10)

where T denotes matrix transpose, * denotes complex conjugate, Q is a real diagonal
weighting matrix, nf is the number of frequency points used to define the frequency
response curves, and Er is the error term given by

Er =[(A11 −A12A−1
22 A21)q1 − (p1 −A12A−1

22 p2)]v=vr . (11)

Typically, p2 is a zero vector, and p1 will contain ones and zeros, and this reduces
computations.

When selecting the design variables to update the A matrices, the connectivity and
symmetry of the FEM matrices can be maintained using an elemental proportional update
technique. In this approach, scale factors are defined for each finite-element in the model,
and the scale factors become the design variables in the optimization. The elemental
matrices with updated scale factors are assembled to obtain the global matrices. This
method exactly preserves the connectivity of the system matrices but assumes that
proportional damage occurs to the elements, which means that bending stiffness and
extensional stiffness of the element are dependent. Alternatively, separate factors could be
used to represent the individual stiffness terms. The equations for the elemental damage
update approach are

D� = s
L

r=1

dd
r Dr , K� = s

L

r=1

dk
r Kr , (12a, b)
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where the summation denotes matrix assembly of the elemental matrices Kr and Dr ,
multiplied by the scale factors dd

r and dk
r , and where L is the total number of finite elements

in the model. In this paper, changes in the mass matrix due to damage are assumed to
be negligible and the mass matrix is not adjusted. Note that the scale factors for the healthy
model are all equal to one. A design vector is set up with these scale factors, and the
symmetry and connectivity of the model is always automatically retained. A computer
algorithm to test the technique was developed using the MATLAB [5, 6] software system
and the optimization step is performed using the CONSTR subroutine contained in the
MATLAB optimization toolbox. The only constraints on the design variables are bounds
on their magnitudes to ensure that stiffness and damping values cannot decrease below
zero, and that stiffness values cannot increase from the undamaged model. Note that in
some cases damping values could increase due to damage. The bounds on the design
variables are used to help locate damage when a minimum number of sensors are used
on the structure. The design variable bounds are

jL
j E jj E jU

j , j=1, 2, . . . , ndv, (13)

where L and U represent the lower and upper bounds, and ndv is the total number of design
variables in the problem. No functional constraints are needed with this formulation. A
final requirement to make the optimization computationally feasible is to derive a closed
form gradient of the objective function. The gradient of equation (10) can be obtained
exactly without any additional function evaluations or matrix inversions and is

dJ
djj

= s
nf

r=1

2 Re (sr ), (14)

where

sr =E*T
r Q

dEr

djj
,

dE*T
r

djj
=0dEr

djj1
*T

.

The term dEr /djj only involves matrix addition and multiplication to compute and is

1Er

1ji
=

01A11

1jj
−

1A12

1jj
A−1

22 A21 −A1201A−1
22

1jj
A21 +A−1

22
1A21

1jj 11q1 +

G
G

G

G

G

K

k

G
G

G

G

G

L

l01A12

1jj
A−1

22 +A12
1A−1

22

1jj 1p2

v=vr

, (15)

where

1Aab

1jj
=

1(Kab −v2Mab + ivDab )
1jj

, a, b=1 or 2,
1A−1

22

1jj
=−A−1

22
1A22

1jj
A−1

22 .

The gradients of the system matrices, M, D, and K, with respect to the design variables
are simply matrices with all zeros, except for the elemental stiffness matrix assembled into
the global stiffness matrix in the position corresponding to that particular finite-element.
Moreover, the second order form of the system equations is used in which matrix sparsity
is preserved, and the MATLAB sparse matrix functions take advantage of this to further
streamline computations.
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Damage is identified by changes in optimized scale factors that multiply the elemental
matrices used to assemble the finite-element model. Scale factors different than one indicate
damage to that particular finite-element. The accuracy in which damage can be located
depends on: (1) the detail of the analytical model, (2) the repeatability of the frequency
response data taken from the damaged structure, and (3) the success of the optimizer in
finding the global minimum solution. The repeatability of FRF data is discussed in
references [7, 8].

3.  :      

This example assigns a simulated measured frequency response to detect damage on
the 18-member simply supported truss bridge shown in Figure 1. The node and element
numbers are also given in Figure 1. A sinusoidal force f(t)=0·01 sin (vt) acts in the +X,
−Y and −X, −Y axis at nodes 3 and 5, respectively (d.o.f. 5, 6, 9, 10 of the analytical
model). These forces represent a Y (90°) pre-tensioned cable with a single force actuator
to excite the bridge. The bridge is constructed of tension-compression truss elements. The
vector of displacements is x(t)= [x1 y1 x2 y2 x3 · · · x16 y16]T. The mass matrix
contains non-structural mass at each bottom node of the bridge. Proportional damping
(D=0·0005K) is assumed for both the healthy and damaged models. Sixteen scale factors
dk

r , that multiply the elemental stiffness matrices, Kr , are the design variables. The
elemental stiffness matrices are assembled into the global stiffness matrix according to
equation (12). Rows and columns are switched in the system M, D, and K matrices to put
the assigned d.o.f. in the A11 position. The structural connectivity information used to
assemble equation (12) is given in reference [9]. The first undamped natural frequency in
the healthy model is 0·516 Hz. The first case is 50% damage (reduction in stiffness and
damping) to element 6 and this reduces the first frequency of the bridge to 0·473 Hz or
8·2%. Various damage cases were run in which FRFs were assigned from various nodes
in the X and/or Y directions, and the technique exactly corrected the stiffness matrix. A
summary of all the cases studied is given in Table 1.

The damage analysis was run using nine frequency points spaced at 5 rad/s intervals
starting at zero, or some variation of this (e.g., seven points at 6 rad/s intervals), until
J=0. Different frequency points were tried because sometimes the optimization did not
go to zero. The damage diagnosis was assumed to be correct when the objective function
equaled zero within the precision of the machine calculations. When this occurred the
damage diagnosis for all the cases in Table 1 was correct. This result indicates that a more
robust optimization method or improved objective function could make the procedure
quicker. Note in Table 1 that damage was diagnosed in some cases using only one

Figure 1. Finite element model of a truss bridge with excitation force.
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T 1

Summary of damage detection study with no noise in measurements

Single damage d.o.f. assigned Two damages d.o.f. assigned

E1=50% 5, 6, 9, 10 E1=50%, E6=50% 3, 4, 5, 6, 9, 10,15, 16
E1=50% 1, 2 E1=50%, E6=50% 4, 5, 6, 9, 10, 16
E1=50% 6, 10 E1=50%, E6=50% 5, 6, 9, 10
E6=50% 4, 5, 6, 9, 10, 16 E1=50%, E6=50% 4, 6, 10, 16
E6=50% 4, 6, 10, 16 E1=50%, E6=50% 6, 10
E6=50% 5, 6, 9, 10 E1=25%, E6=25% 5, 6, 9, 10
E6=50% 6, 10 E1=25%, E6=25% 6, 10
E6=50% 10 E1=1%, E6=1% 10
E6=5% 10 — —
E11=50% 6, 10 — —
E14=50% 6, 10 — —

measurement d.o.f. However, in these cases, usually convergence of the optimization was
slow and more than one trial was required. The FRFs for nodes 1, 3, 5, 7 in the Y-axis
of the bridge are shown in Figure 2. Note that the healthy FRFs of nodes 1 and 7, and
3 and 5 are the same due to symmetry. However, the nonsymmetric damage destroys the
symmetry in the damaged FRFs. From this example, it is concluded that the optimization

Figure 2. Frequency response magnitude and phase angle for bridge truss (healthy=dashed
line, damaged (50% to element 6)= solid line) for (a) and (c) Node 1, (b) and (d) Node 7,
(e) and (g) Node 3, (f) and (h) Node 5, all Y-axis.
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Figure 3. Damage prediction for bridge truss, damage to element 6, 5% noise (FRFs assigned
at d.o.f. 6 and 10, at 23 frequency points); (a) 50% damage, (b) 10% damage, (c) 5% damage.

works most accurately by assigning as many d.o.f. as possible, using the smallest number
of frequency points possible, and by concentrating on the areas where the FRFs have the
greatest difference between the healthy and damaged cases. An algorithm could be
developed to select the frequency points to be used in the optimization.

3.1. Effect of measurement noise on damage detection
A 5% random noise is added to the simulated FRFs to represent errors in measured

data, and the damage detection problem was rerun for various cases of damage. The noise
is uniformly distributed, with the mean=0 and variance=1, and is added directly to each
FRF point as

q̄j (iv)= qj (iv)01+
0·05
n

s
n

k=1

randnk1, (16)

where q̄j (iv) is the jth element of the FRF vector q1, and randn is the random noise
generator function in MATLAB. Two noise conditions are considered; noise with no
averaging of the data (n=1), and noise with 5 averages of the simulated measured data
(n=5).

Initially three cases of 5% noise, no damage, and no averaging were run and the
algorithm incorrectly predicted damage levels from 2 to 4%. In Figure 3, different levels
of damage are applied to element 6 with 5% noise and no averaging and the algorithm
closely predicted the damage in element 6, but put a small level of incorrect damage at
other elements. In Figure 4, a damage level of 5% is applied to different elements with
5% noise and no averaging and the algorithm predicted the location and approximate
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Figure 4. Damage prediction for bridge truss, damage to various elements, 5% noise (FRFs
assigned at d.o.f. 6 and 10, at 23 frequency points); 5% damage to (a) element 11, (b) element
9, (c) elements 1 and 6.

damage level of the damage elements, but also put a small level of incorrect damage at
other elements. In Figures 3 and 4, the best results (i.e., the result with the smallest J value)
from a few trials are presented, where different random errors are used in each run. Finally,
the experiment with no damage and 5% noise was repeated, except here five averages of
FRF data are taken and then the damage detection algorithm is run. This simulation shows
that the predicted damage due to noise is reduced from 2–4% to 0.3–1.5% by averaging.

In the above examples, the damage detection technique fairly well discriminates between
noise and small levels (5%) of damage. With noise, the damage is still located but the
accuracy of the damage diagnosis is reduced. The 5% damage produces only a small
change in the FRFs that is mostly away from the resonant points. This damage would
be difficult to detect using most damage detection methods. Overall, the results with noise
show that using more frequency points improves accuracy, but makes convergence of the
damage algorithm more difficult. Averaging measurements was the most effective way to
reduce random measurement error.

4. 

The simulation example using FRF data and optimization diagnosed damage to a
structure using only a minimum number of sensors on the structure. The technique does
not use modal analysis or model reduction or a training step, and all the information
contained in the FRF function is used, not just the information around the peaks as in
modal analysis procedures. The analytical model, model connectivity, and bounds on
structural stiffness values are also used to diagnose the damage.
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The first limitation on the technique is that it requires a lot of computation which may
restrict it to small models. The approach suggested to solve larger models is to ‘‘scan’’ the
structural model by sections to detect and diagnose the damage. The scanning is based
on the nodal connectivity patterns of the elements and runs a separate optimization using
one or a group of elemental scale factors at a time as design variables. This brute force
approach is actually more efficient than it might seem because there are only a small
number of design variables in the optimization and convergence is very quick. Use of a
laser vibrometer would provide more data to solve large problems, and an algorithm
should be developed to automatically pick points from the healthy and damaged FRFs
that would allow the optimizer to easily find the global minimum. Also, a more robust
optimization algorithm should be used. A second limitation is that FRFs may not be
exactly repeatable due to variations in temperature which changes the elastic modulus and
causes boundary conditions to change. To overcome this, a technique that uses frequency
shifting is being tested to remove global structural changes due to the environment.

Finally, only one excitation point is used in this example which gives the measured
number of FRFs equal to the number of inputs multiplied by the number of measurements.
Using more inputs would give more FRFs to assign, and may improve the damage
diagnosis.
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